-->

Differential Equations

Question
CBSEENMA12033124

Show that the given differential equation is homogeneous and solve it:
open parentheses straight x squared minus straight y squared close parentheses space dx space plus space 2 xy space dy space equals space 0




Solution

The given differential equation is
                  open parentheses straight x squared minus straight y squared close parentheses dx plus 2 xy space dy space equals space 0 space space or space space space 2 xy space dy space equals space left parenthesis straight y squared minus straight x squared right parenthesis space dx
or                    dy over dx space equals fraction numerator straight y squared minus straight x squared over denominator 2 xy end fraction                 
It is a differential equation of the form dy over dx space equals straight F left parenthesis straight x comma space straight y right parenthesis
Here,       straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight y squared minus straight x squared over denominator 2 space straight x space straight y end fraction
Replacing x by λx and y by λy comma we get,
           straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda squared straight y squared minus straight lambda squared straight x squared over denominator 2 space straight lambda squared space straight x space straight y end fraction space equals space fraction numerator straight lambda squared space left parenthesis straight y squared minus straight x squared right parenthesis over denominator straight lambda squared space left parenthesis 2 xy right parenthesis end fraction space equals space straight lambda degree space space left square bracket straight F left parenthesis straight x comma space straight y right parenthesis right square bracket
∴    F(x, y) is a homogeneous function of degree zero.
∴   given differential equation is a homogeneous differential equation.
Put y = vx so that dy over dx equals straight v plus straight x dv over dx
therefore space space space space space straight v plus straight x dv over dx equals fraction numerator straight v squared straight x squared minus straight x squared over denominator 2 space straight v space straight x squared end fraction space space or space space space straight v plus straight x dv over dx space equals space fraction numerator straight v squared minus 1 over denominator 2 straight v end fraction
therefore space space space space space space space space space straight x dv over dx space equals space fraction numerator straight v squared minus 1 over denominator 2 straight v end fraction minus straight v space space space or space space space straight x dv over dx space equals fraction numerator straight v squared minus 1 minus 2 straight v squared over denominator 2 straight v end fraction
therefore space space space space space space straight x dv over dx space equals fraction numerator negative 1 minus straight v squared over denominator 2 straight v end fraction space space space space rightwards double arrow space space space space space space fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space minus 1 over straight x space dx
therefore space space space space space integral fraction numerator 2 straight v over denominator 1 plus straight v squared end fraction dv space equals space minus integral 1 over straight x dx
therefore space space space space space log space open vertical bar 1 plus straight v squared close vertical bar space equals space minus log space open vertical bar straight x close vertical bar plus straight c apostrophe
therefore space space space space log space open vertical bar 1 plus straight v squared close vertical bar space plus space log space open vertical bar straight x close vertical bar space equals space space straight c apostrophe
therefore space space log space open vertical bar left parenthesis 1 plus straight v squared right parenthesis thin space left parenthesis straight x right parenthesis close vertical bar space equals space straight c apostrophe
therefore space space space space space space space space straight x left parenthesis 1 plus straight v squared right parenthesis space equals space straight e to the power of straight c apostrophe end exponent space space space space space space space space rightwards double arrow space space space space space space space space straight x open parentheses 1 plus straight y squared over straight x squared close parentheses space equals space straight c
therefore space space space space straight x squared plus straight y squared space equals space straight c space straight x space
is the required solution. 

Some More Questions From Differential Equations Chapter