-->

Differential Equations

Question
CBSEENMA12033121

Show that the given differential equation is homogeneous and solve it:
left parenthesis straight x squared plus xy right parenthesis space dy space equals space left parenthesis straight x squared plus straight y squared right parenthesis space dx

Solution
The given differential equation is
                        open parentheses straight x squared plus straight x space straight y close parentheses dy space equals space left parenthesis straight x squared plus straight y squared right parenthesis space dx
or                dy over dx space equals space fraction numerator straight x squared plus straight y squared over denominator straight x squared plus xy end fraction                                    ...(1)
It is a differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis
Here,          straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight x squared plus straight y squared over denominator straight x squared plus straight x space straight y end fraction
Replacing x by λx space and space straight y space by space λy comma we get
                    straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda squared straight x squared plus straight lambda squared straight y squared over denominator straight lambda squared straight x squared plus straight lambda squared xy end fraction space equals space fraction numerator straight lambda squared left parenthesis straight x squared plus straight y squared right parenthesis over denominator straight lambda squared left parenthesis straight x squared plus xy right parenthesis end fraction space equals space straight lambda degree space left square bracket straight F space left parenthesis straight x comma space straight y right parenthesis right square bracket
therefore space space space straight F left parenthesis straight x comma space straight y right parenthesis is a homogeneous function of degree zero.
therefore space space spacegiven differential equation is a homogeneous differential equation.
Put y = v x so that dy over dx space equals space straight v plus straight x dv over dx
therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator straight x squared plus straight v squared straight x squared over denominator straight x squared plus vx squared end fraction
rightwards double arrow space space space straight v plus straight x dv over dx space equals space fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction space space space space rightwards double arrow space space space straight x dv over straight d space equals space fraction numerator 1 plus straight v squared over denominator 1 plus straight v end fraction minus straight v
therefore space space space space straight x dv over dx space equals space fraction numerator 1 minus straight v over denominator 1 plus straight v end fraction space space space space rightwards double arrow space space space fraction numerator 1 plus straight v over denominator 1 minus straight v end fraction dv space equals space 1 over straight x dx space space space rightwards double arrow space space space space integral open parentheses negative 1 plus fraction numerator 2 over denominator 1 minus straight v end fraction close parentheses dv space equals space integral 1 over straight x dx
therefore space space space space space minus straight v minus 2 space log space left parenthesis 1 minus straight v right parenthesis space equals space log space straight x space plus straight c
rightwards double arrow space space space minus straight y over straight x minus 2 log space open parentheses 1 minus straight y over straight x close parentheses space equals space log space straight x space plus space straight c
rightwards double arrow space space space space minus straight y minus 2 straight x space log space open parentheses fraction numerator straight x minus straight y over denominator straight x end fraction close parentheses space equals space straight x space log space straight x space plus space straight c space straight x
which is required solution. 

Some More Questions From Differential Equations Chapter