-->

Differential Equations

Question
CBSEENMA12033107

Solve the following differential equation:
straight x squared dy over dx space equals space 2 xy plus straight y squared

Solution
The given differential equation is
                                 straight x squared dy over dx space equals space 2 xy plus straight y squared
or         dy over dx space equals space fraction numerator 2 xy plus straight y squared over denominator straight x squared end fraction                                ...(1)
Put         straight y space equals space straight v space straight x space space space space so space that space space space dy over dx equals straight v plus dv over dx
therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator 2 straight x. space vx plus straight v squared straight x squared over denominator straight x squared end fraction
or    straight v plus straight x space dv over dx space equals space 2 space straight v space plus space straight v squared
or     straight x dv over dx space equals straight v squared plus straight v                     
Separating the variables, we get,
                        fraction numerator 1 over denominator straight v squared plus straight v end fraction dv space equals space 1 over straight x dx
Integrating,   integral fraction numerator 1 over denominator straight v squared plus straight v end fraction dv space equals space integral 1 over straight x dx
therefore space space space integral fraction numerator 1 over denominator straight v left parenthesis straight v plus 1 right parenthesis end fraction dv space equals space integral 1 over straight x dx
space therefore space space space space integral open square brackets fraction numerator 1 over denominator straight v left parenthesis 0 plus 1 right parenthesis end fraction plus fraction numerator 1 over denominator left parenthesis negative 1 right parenthesis thin space left parenthesis straight v plus 1 right parenthesis end fraction close square brackets space dv space equals space integral space 1 over straight x dx
therefore space space space space integral open parentheses 1 over straight v minus fraction numerator 1 over denominator straight v plus 1 end fraction close parentheses space dv space equals space integral 1 over straight x dx
therefore space space space log space open vertical bar straight v close vertical bar space minus space log space open vertical bar straight v plus 1 close vertical bar space equals space log space open vertical bar straight x close vertical bar space plus space log space straight c subscript 1
therefore space space log space open vertical bar fraction numerator straight v over denominator straight v plus 1 end fraction close vertical bar space equals space log space left parenthesis straight c subscript 1 space open vertical bar straight x close vertical bar right parenthesis
therefore space space open vertical bar fraction numerator straight v over denominator straight v plus 1 end fraction close vertical bar space equals space straight c subscript 1 open vertical bar straight x close vertical bar
therefore space space space space space fraction numerator begin display style straight y over straight x end style over denominator begin display style straight y over straight x plus 1 end style end fraction equals space space cx
therefore space space space space fraction numerator straight y over denominator straight x plus straight y end fraction space equals space straight c space straight x comma space which space is space required space solution. space

Some More Questions From Differential Equations Chapter