-->

Differential Equations

Question
CBSEENMA12033177

Find one-parameter families of solution curves of the following differential equation:
  straight y apostrophe plus straight y space cosx space equals space straight e to the power of sin space straight x end exponent space cos space straight x

Solution
The given differential equation is
     straight y apostrophe plus straight y space cosx space equals space straight e to the power of sinx space cos space straight x space space space space space space space or space space space space space dy over dx plus left parenthesis cos space straight x right parenthesis. space straight y space equals space straight e to the power of sin space straight x end exponent space space cosx space
Comparing it with dy over dx plus straight P space straight y space equals space straight Q comma space we space get space straight P space equals cosx comma space straight Q space equals space straight e to the power of sinx. space cosx
therefore space space space space space space space space straight e to the power of integral straight P space dx end exponent space equals space straight e to the power of integral space cosx space dx end exponent space equals straight e to the power of sin space straight x end exponent
Solution of given differential equation is
             straight y space. straight e to the power of integral straight P space dx end exponent space equals space integral straight Q. space straight e to the power of integral straight P space dx end exponent dx plus straight c
or       straight y space straight e to the power of sinx space equals space integral straight e to the power of sinx space cosx. space straight e to the power of sinx dx plus straight c
or         straight y space straight e to the power of sinx space equals space integral straight e to the power of 2 space sinx end exponent space cosx space dx plus straight c                        ...(1)
Let I = integral straight e to the power of 2 sinx end exponent space cos space straight x space dx
Put          sinx = t,                          therefore space space space cos space straight x space dx space equals dt
therefore                     I = integral straight e to the power of 2 straight t end exponent dt space equals space straight e to the power of 2 straight t end exponent over 2 space equals 1 half straight e to the power of 2 sinx end exponent
therefore space space from space left parenthesis 1 right parenthesis comma space space space ye to the power of sinx space equals space 1 half straight e to the power of 2 sinx end exponent plus straight c comma space which space is space required space solution.

Some More Questions From Differential Equations Chapter