-->

Differential Equations

Question
CBSEENMA12033146

For the given differential equation, find the particular solution satisfying the given condition:
                      2 xy plus straight y squared minus 2 straight x squared straight y apostrophe space equals space 0 space space space space space space space space space space space space space straight y left parenthesis 1 right parenthesis space equals space 2
          
       





Solution
The given differential equation is
                 2 xy plus straight y squared minus 2 straight x squared straight y apostrophe space equals space 0 space space space space space space space or space space space space space 2 straight x squared straight y apostrophe space equals space 2 xy plus straight y squared
therefore space space space space space space space space space dy over dx space equals space fraction numerator 2 xy plus straight y squared over denominator 2 straight x squared end fraction
Put   y - v x    so that   dy over dx equals straight v plus straight x dv over dx
 therefore space space space space space space straight v plus straight x dv over dx equals fraction numerator 2 straight x squared straight v plus straight v squared straight x squared over denominator 2 straight x squared end fraction
therefore space space space space space straight v plus straight x dv over dx equals fraction numerator 2 straight v plus straight v squared over denominator 2 end fraction
therefore space space space space space space space space straight x dv over dx equals fraction numerator 2 straight v plus straight v squared over denominator 2 end fraction minus straight v space space space space space or space space space straight x dv over dx equals straight v squared over 2
therefore space space space space space 2 1 over straight v squared dv space equals space 1 over straight x dx
Integration,  2 space integral straight v to the power of negative 2 end exponent space dv space equals space integral 1 over straight x dx
therefore space space space space space 2 fraction numerator straight v to the power of negative 1 end exponent over denominator negative 1 end fraction space equals space log space open vertical bar straight x close vertical bar plus straight c space space space space space or space space space space fraction numerator negative 2 over denominator straight v end fraction equals log space open vertical bar straight x close vertical bar plus straight c
therefore space space space space minus 2 straight x over straight y space equals space log space open vertical bar straight x close vertical bar plus straight c
Now,       straight y left parenthesis 1 right parenthesis space equals space 2 space space space space space space space space space space space space space space rightwards double arrow space space space space straight y space equals space 2 space space space when space straight x space equals space 1
therefore space space space space minus 2. space 1 half space equals space log space 1 plus straight c space space space space space space space space space space rightwards double arrow space space space space minus 1 space equals space 0 space plus straight c space space space space rightwards double arrow space space space space straight c space equals space minus 1
therefore space space solution space is space minus fraction numerator 2 straight x over denominator straight y end fraction space equals space log space open vertical bar straight x close vertical bar minus 1 space space space space space or space space space straight y space equals space fraction numerator 2 straight x over denominator 1 minus log space open vertical bar straight x close vertical bar end fraction.

Some More Questions From Differential Equations Chapter