-->

Vector Algebra

Question
CBSEENMA12033036

Find a one parameter family of solutions of each of the following differential equation:
y' = ex + y + e–x + y

Solution
The given differential equation is
                               dy over dx equals space straight e to the power of straight x plus straight y end exponent space plus space straight e to the power of negative straight x plus straight y end exponent space space space space space or space space space space dy over dx space equals space straight e to the power of straight x. space straight e to the power of straight y space plus space straight e to the power of straight x. space straight e to the power of straight y
or                   dy over dx space equals space straight e to the power of straight y left parenthesis straight e to the power of straight x minus straight e to the power of straight x right parenthesis
Separating the variables and integrating, we get,
                              integral straight e to the power of negative straight y end exponent dy space equals space integral left parenthesis straight e to the power of straight x plus straight e to the power of negative straight x end exponent right parenthesis space dx
therefore space space space space space space space space space space fraction numerator straight e to the power of negative straight y end exponent over denominator negative 1 end fraction space equals space straight e to the power of straight x plus fraction numerator straight e to the power of negative straight x end exponent over denominator negative 1 end fraction plus straight c space space space space space space space or space space space minus straight e to the power of straight y space equals space straight e to the power of straight x. end exponent space straight e to the power of negative straight x end exponent plus straight c
is the required solutions.