-->

Vector Algebra

Question
CBSEENMA12033029

Solve the following differential equation:
straight y left parenthesis 1 minus straight x squared right parenthesis dy over dx space equals space straight x left parenthesis 1 plus straight y squared right parenthesis


            


Solution

The given differential equation is
                       straight y left parenthesis 1 minus straight x squared right parenthesis dy over dx space equals space straight x left parenthesis 1 plus straight y squared right parenthesis
Separating the variables, we get,
                             fraction numerator straight y over denominator 1 plus straight y squared end fraction dy space equals space fraction numerator straight x over denominator 1 minus straight x squared end fraction dx
Integrating,     integral fraction numerator 2 straight y over denominator 1 plus straight y squared end fraction dy space equals space minus integral fraction numerator negative 2 straight x over denominator 1 minus straight x squared end fraction dx
therefore space space space log space space open vertical bar 1 plus straight y squared close vertical bar space equals space minus log space open vertical bar 1 minus straight x squared close vertical bar plus log space straight c
therefore space space log space open vertical bar 1 minus straight x squared close vertical bar plus log open vertical bar 1 plus straight y squared close vertical bar space equals space log space straight c
therefore space space log space open vertical bar 1 minus straight x squared close vertical bar plus log space open vertical bar 1 plus straight y squared close vertical bar space equals space log space straight c
therefore space log space open vertical bar left parenthesis 1 minus straight x squared right parenthesis thin space left parenthesis 1 plus straight y squared right parenthesis close vertical bar space equals space log space straight c
therefore space space space open vertical bar left parenthesis 1 minus straight x squared right parenthesis thin space left parenthesis 1 plus straight y squared right parenthesis close vertical bar space equals space straight c
therefore space space left parenthesis 1 minus straight x squared right parenthesis thin space left parenthesis 1 plus straight y squared right parenthesis space equals space straight A comma space where space straight A space is space constant.
This is required solution.