Sponsor Area

Vector Algebra

Question
CBSEENMA12033027

Solve the following differential equation:
open parentheses straight x squared straight y plus straight x squared close parentheses space dx space plus space left parenthesis straight x space straight y squared minus straight y squared right parenthesis space dy space equals space 0

            


Solution
The given differential equation is
                     left parenthesis straight x squared straight y plus straight x squared right parenthesis space dx plus left parenthesis straight x space straight y squared minus straight y squared right parenthesis space dy space equals space 0
or             straight x squared left parenthesis straight y plus 1 right parenthesis space dx plus space straight y squared left parenthesis straight x minus 1 right parenthesis space dy space equals space 0 space space space space or space space space space straight y squared left parenthesis straight x minus 1 right parenthesis space dy space equals space minus straight x squared left parenthesis straight y plus 1 right parenthesis space dx
Separating the variables, we get,
                   fraction numerator straight y squared over denominator straight y plus 1 end fraction dy space equals space minus fraction numerator straight x squared over denominator straight x minus 1 end fraction dxaa
Integrating,  integral fraction numerator straight y squared over denominator straight y plus 1 end fraction dy space equals space minus integral fraction numerator straight x squared over denominator straight x minus 1 end fraction dx
therefore space space space space integral open parentheses straight y minus 1 plus fraction numerator 1 over denominator straight y plus 1 end fraction close parentheses space dy space equals space minus integral open parentheses straight x plus 1 plus fraction numerator 1 over denominator straight x minus 1 end fraction close parentheses dx
therefore space space space straight y squared over 2 minus straight y plus log space open vertical bar straight y plus 1 close vertical bar space equals space open square brackets straight x squared over 2 plus straight x plus log space open vertical bar straight x minus 1 close vertical bar close square brackets space plus space straight c
which is required solution.