Sponsor Area

Vector Algebra

Question
CBSEENMA12033074

Find the particular solution of (1 + x2 + y2 + x2 y2 ) dx + x y dy = 0

Solution
The given differential equation is
 (1 + x2 + y2 + x2 y2 ) dx + x y dy = 0
or   open square brackets left parenthesis 1 plus straight x squared right parenthesis space plus space straight y squared left parenthesis 1 plus straight x squared right parenthesis close square brackets dx space plus space straight x space straight y space dy space equals space 0
or   left parenthesis 1 plus straight x squared right parenthesis space left parenthesis 1 plus straight y squared right parenthesis space dx space space plus straight x space straight y space dy space equals space 0
or                      straight x space straight y space dy space equals space minus left parenthesis 1 plus straight x squared right parenthesis thin space left parenthesis 1 plus straight y squared right parenthesis space dx
therefore space space space space space fraction numerator straight y over denominator 1 plus straight y squared end fraction dy space equals space minus fraction numerator 1 plus straight x squared over denominator straight x end fraction dx
therefore space space space space fraction numerator straight y over denominator 1 plus straight y squared end fraction dy space equals space minus open parentheses 1 over straight x plus straight x close parentheses dx
Integrating,   1 half integral fraction numerator 2 straight y over denominator 1 plus straight y squared end fraction dy space equals space minus integral open parentheses 1 over straight x plus straight x close parentheses space dx
therefore space space space space 1 half space log space left parenthesis 1 plus straight y squared right parenthesis space equals space minus open square brackets log space open vertical bar straight x close vertical bar plus straight x squared over 2 close square brackets plus straight c                   ...(1)
Now straight y space equals space 0 space space when space straight x space equals space 1
therefore space space space space space space space space space space space space space space space 1 half log space 1 space space equals space minus open square brackets log space 1 plus 1 half close square brackets plus straight c
therefore space space space space space space space space space space space space space space space space 0 space equals space minus 1 half plus straight c space space space space space space space space space space space space space space rightwards double arrow space space space straight c space equals space 1 half
therefore space space space space from space left parenthesis 1 right parenthesis
space space space space space space space space space space space space space 1 half log space open square brackets 1 plus straight y squared close square brackets equals space minus open square brackets log space open vertical bar straight x close vertical bar plus straight x squared over 2 close square brackets plus 1 half
which is required solution.