Sponsor Area

Vector Algebra

Question
CBSEENMA12033052

Solve:
 ex tan y dx + (1 – ex) sec2 y dy = 0.

Solution

The given differential equation is
                           straight e to the power of straight x space tany space dx space plus space left parenthesis 1 minus straight e to the power of straight x right parenthesis space sec squared straight y space dy space equals space 0
or          left parenthesis 1 minus straight e to the power of straight x right parenthesis space sec squared straight y space dy space equals space minus straight e to the power of straight x space tan space straight y space dx space space space or space space space fraction numerator sec squared straight y over denominator tan space straight y end fraction space dy space equals space minus fraction numerator straight e to the power of straight x over denominator 1 minus straight e to the power of straight x end fraction dx
therefore space space space integral fraction numerator sec squared straight y over denominator tan space straight y end fraction dy space equals space integral fraction numerator negative straight e to the power of straight x over denominator 1 minus straight e to the power of straight x end fraction dx
rightwards double arrow space space space space log space left parenthesis tan space straight y right parenthesis space equals space log space left parenthesis 1 minus straight e to the power of straight x right parenthesis space plus space log space straight e
rightwards double arrow space space space space log space left parenthesis tan space straight y right parenthesis space equals space log space left square bracket straight e space left parenthesis 1 minus straight e to the power of straight x right parenthesis right square bracket
therefore space space space space space space space tan space straight y space equals space straight e left parenthesis 1 minus straight e to the power of straight x right parenthesis space is space the space required space solution. space space