-->

Vector Algebra

Question
CBSEENMA12033042

Solve:
dy over dx space equals straight e to the power of straight x minus straight y end exponent plus straight x cubed straight e to the power of negative straight y end exponent

Solution

The given differential equation is   
                    dy over dx space equals space straight e to the power of straight x minus straight y end exponent plus straight x cubed straight e to the power of negative straight y end exponent space space or space space dy over dx space equals space straight e to the power of straight x. space straight e to the power of negative straight y end exponent space plus space straight x cubed. straight e to the power of negative straight y end exponent space space or space space dy over dx space equals space left parenthesis straight e to the power of straight x plus straight x cubed right parenthesis space straight e to the power of negative straight y end exponent
Separating the variables, we get,  1 over straight e to the power of negative straight y end exponent dy space equals space left parenthesis straight e to the power of straight x plus straight x cubed right parenthesis space dx
rightwards double arrow space space space integral straight e to the power of straight y space dy space equals space integral left parenthesis straight e to the power of straight x plus straight x cubed right parenthesis space dx space space rightwards double arrow space space space straight e to the power of straight y space equals space straight e to the power of straight x plus straight x to the power of 4 over 4 plus straight c is the required solution.