Linear Inequalities

Question
CBSEENMA11015518

A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a triangle OPQ, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is

  • -1/4

  • -4

  • -2

  • -1/2

Solution

C.

-2

The slope of line PQ 

Let 'm' be the slope of the line PQ, then the equation of PQ is
y -2 = m (x-1)
Now, PQ meets X-axis at P open parentheses 1 minus 2 over straight m comma space 0 close parentheses and y-axis at Q (0,2-m)
OP space equals space 1 minus 2 over straight m space and space OQ space equals space 2 minus straight m
Also comma space area space space of space increment OPQ space equals space 1 half space left parenthesis OP right parenthesis left parenthesis OQ right parenthesis
space equals space 1 half open vertical bar open parentheses 1 minus 2 over straight m close parentheses left parenthesis 2 minus straight m right parenthesis close vertical bar
equals space 1 half open vertical bar 2 minus straight m minus 4 over straight m plus 2 close vertical bar
equals space 1 half open vertical bar 4 minus open parentheses straight m plus 4 over straight m close parentheses close vertical bar
Let space straight f left parenthesis straight m right parenthesis space equals space 4 minus open parentheses straight m plus 4 over straight m close parentheses
rightwards double arrow space straight f apostrophe left parenthesis straight m right parenthesis space equals space minus space 1 plus 4 over straight m squared
Now, f'(m) = 0 
m = ± 2
f(2) =0
f(-2) = 8
Since, the area cannot be zero, hence the required value of m is -2

Some More Questions From Linear Inequalities Chapter