Binomial Theorem


Find the equation of the parabola whose vertex is at (0, 0) and focus is at (0, – 2).


The vertex of the parabola is at O(0, 0) and the focus at S (0, -2). For both the points, x = 0.
rightwards double arrow     The x-axis of the parabola is along x = 0 or the y-axis.
rightwards double arrow     The equation of the parabola in the standard form is <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/ at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/ line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/ mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/ com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/ com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/ com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/ com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>    ...(i)
Also, the focus straight S space left parenthesis 0 comma space straight a right parenthesis space left right arrow space left parenthesis 0 comma space minus 2 right parenthesis space rightwards double arrow space straight a space equals space minus 2
Hence, the equation of the parabola is: straight x squared equals 4 left parenthesis negative 2 right parenthesis space straight y space or space straight x squared equals negative 8 straight y

Sponsor Area

Some More Questions From Binomial Theorem Chapter