Sponsor Area

Sequences And Series

Question
CBSEENMA11014950

Find the locus of a point P (x, y, z), where x > y > z > 0, such that its distance from ZX-plane exceeds 1/2 the sum of its distances from XY-plane and YZ-plane by 2.

Solution

The point is P(x, y, z), where x, y, z>0
Distance from ZX-plane = space space open vertical bar straight y close vertical bar space equals space straight y
Distance from XY-plane = open vertical bar straight z close vertical bar equals straight z
Distance from YZ-plane = open vertical bar straight x close vertical bar equals straight x
According to the question, we have
               space space space space space space space space space straight y minus 1 half left parenthesis straight z plus straight x right parenthesis equals 2
rightwards double arrow                    2y - z - x = 4
Hence, the locus is x - 2y + z + 4 =0