Principle Of Mathematical Induction

Question
CBSEENMA11014351

Prove that in any triangle ABC:

(i)   straight r equals left parenthesis straight s minus straight a right parenthesis tan straight A over 2 equals left parenthesis straight s minus straight b right parenthesis tan straight B over 2 space equals space left parenthesis straight s minus straight c right parenthesis tan straight C over 2

(ii)  <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>



            

Solution

Proof: (i) Let I be the incentre and D, E, F be the points of contact of the incircle with the sides.
                                   
Join ID, IE, IF such that
ID perpendicular BC,  IE perpendicular CA and IF perpendicular AB
Now,        2s - 2a = AB + CA - BC
                          = (AF + FB) + (CE + EA) - (BD + DC)
                          = (AF + BD) + (CD + AF) - (BD + DC)
                                                        [∵ AE = AF, BF = BD and CD = CE]
                          = 2AF               
rightwards double arrow              AF = s - a                                                                 ...(i)
Now, from right angle triangle AFI,
                  IF over AF space equals space tan straight A over 2
or                           space space straight r equals space AF space tan straight A over 2 equals left parenthesis straight s minus straight a right parenthesis tan straight A over 2                 [By using (i)]               
Similarly, we can show other two results.    
(ii)   Now,      BC space equals space BD space plus space DC space equals space rcot straight B over 2 plus rcot straight C over 2                [From figure]
                    space space space space straight a equals straight r open square brackets cot straight B over 2 plus cot straight C over 2 close square brackets
rightwards double arrow                space space straight a equals straight r open square brackets fraction numerator cos begin display style straight B over 2 end style sin begin display style straight C over 2 end style plus cos begin display style straight C over 2 end style sin begin display style straight B over 2 end style over denominator sin begin display style straight B over 2 end style sin begin display style straight C over 2 end style end fraction close square brackets space equals space straight r open square brackets fraction numerator sin open parentheses begin display style fraction numerator straight B plus straight C over denominator 2 end fraction end style close parentheses over denominator sin begin display style straight B over 2 end style sin begin display style straight C over 2 end style end fraction close square brackets
                         equals straight r open square brackets fraction numerator sin open parentheses begin display style straight pi over 2 end style minus begin display style straight A over 2 end style close parentheses over denominator sin begin display style straight B over 2 end style sin begin display style straight C over 2 end style end fraction close square brackets equals straight r fraction numerator cos begin display style straight A over 2 end style over denominator sin begin display style straight B over 2 end style sin begin display style straight C over 2 end style end fraction
or            straight r equals fraction numerator asin begin display style straight B over 2 end style sin begin display style straight C over 2 end style over denominator cos begin display style straight A over 2 end style end fraction
Similarly, we can show other two results.
                            

Some More Questions From Principle of Mathematical Induction Chapter

Find 1 radian angle in degrees, minutes, seconds.