If m times the mth term is equal to n times the nth term of an A.P. Prove that (m + w)th term of an A.P. is zero.
Let a be the first term and d be the common difference
Since m times the mth term is equal to n times the nth term.
∴
or m[a + (m - 1)d] = n[a + (n - 1)d]
or ma + m(m - 1)d = na + n (n-1)d
or ma - na +
or (m - n) a + (
or (m - n) a + [(m2 - n2) - (m - n)] d = 0
or (m - n) a + [(m - n) (m + n) - (m - n)]d = 0
or (m - n) a + (m - n) (m + n - 1)d = 0
or (m - n) [a + (m + n - 1)d] = 0
or a + (m + n - 1) d =0 (∵ )
Hence,