Sponsor Area

Sets

Question
CBSEENMA11012920

Prove the following by principle of mathematical induction for all straight n element of straight N:

WiredFaculty




Solution

Let straight P left parenthesis straight n right parenthesis colon space fraction numerator 1 over denominator 1.2.3 end fraction plus space fraction numerator 1 over denominator 2.3.4 end fraction plus fraction numerator 1 over denominator 3.4.5 end fraction plus space...... plus fraction numerator 1 over denominator straight n left parenthesis straight n plus 1 right parenthesis left parenthesis straight n plus 2 right parenthesis end fraction space equals space fraction numerator straight n left parenthesis straight n plus 3 right parenthesis over denominator 4 left parenthesis straight n plus 1 right parenthesis left parenthesis straight n plus 2 right parenthesis end fraction
I.     For n = 1,
      straight P left parenthesis 1 right parenthesis colon space fraction numerator 1 over denominator 1.2.3 end fraction space equals space fraction numerator 1 left parenthesis 1 plus 3 right parenthesis over denominator 4 left parenthesis 1 plus 1 right parenthesis left parenthesis 1 plus 2 right parenthesis end fraction rightwards double arrow 1 over 6 space equals space fraction numerator 4 over denominator 4 left parenthesis 2 right parenthesis left parenthesis 3 right parenthesis end fraction rightwards double arrow space 1 over 6 space equals space 1 over 6

∴    P(1) is true
II.    Suppose the statement is true for n = m, straight m space element of space straight N.

∴     straight P left parenthesis straight m right parenthesis colon space fraction numerator 1 over denominator 1.2.3 end fraction plus fraction numerator 1 over denominator 2.3.4 end fraction plus fraction numerator 1 over denominator 3.4.5 end fraction plus........ plus space fraction numerator 1 over denominator straight m left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis end fraction space equals space fraction numerator straight m left parenthesis straight m plus 3 right parenthesis over denominator 4 left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis end fraction space space space... left parenthesis i right parenthesis
III.  For n = m +1,
      straight P left parenthesis straight m plus 1 right parenthesis colon space fraction numerator 1 over denominator 1.2.3 end fraction plus fraction numerator 1 over denominator 2.3.4 end fraction plus fraction numerator 1 over denominator 3.4.5 end fraction plus....... plus fraction numerator 1 over denominator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis left parenthesis straight m plus 3 right parenthesis end fraction equals fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 1 plus 3 right parenthesis over denominator 4 left parenthesis straight m plus 1 plus 1 right parenthesis left parenthesis straight m plus 1 plus 2 right parenthesis end fraction
or
   WiredFaculty
                                                                                              space space equals fraction numerator left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 4 right parenthesis over denominator 4 left parenthesis straight m plus 2 right parenthesis left parenthesis straight m plus 3 right parenthesis end fraction

From (i),
fraction numerator 1 over denominator 1.2.3 end fraction space plus space fraction numerator 1 over denominator 2.3.4 end fraction plus fraction numerator 1 over denominator 3.4.5 end fraction plus space........ plus space fraction numerator 1 over denominator straight m left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis end fraction equals space fraction numerator straight m left parenthesis straight m plus 3 right parenthesis over denominator 4 left parenthesis straight m plus 1 right parenthesis left parenthesis straight m plus 2 right parenthesis end fraction

∴   straight P left parenthesis straight m plus 1 right parenthesis colon fraction numerator straight m left parenthesis straight m plus 3 right parenthesis over denominator 4 left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 2 right parenthesis end fraction plus fraction numerator 1 over denominator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 2 right parenthesis space left parenthesis straight m plus 3 right parenthesis end fraction equals fraction numerator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 4 right parenthesis over denominator 4 left parenthesis straight m plus 2 right parenthesis space left parenthesis straight m plus 3 right parenthesis end fraction
rightwards double arrow space space fraction numerator 1 over denominator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 2 right parenthesis end fraction open square brackets fraction numerator straight m left parenthesis straight m plus 3 right parenthesis over denominator 4 end fraction plus fraction numerator 1 over denominator straight m plus 3 end fraction close square brackets space equals space fraction numerator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 4 right parenthesis over denominator 4 space left parenthesis straight m plus 2 right parenthesis space left parenthesis straight m plus 3 right parenthesis end fraction
rightwards double arrowfraction numerator 1 over denominator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 2 right parenthesis end fraction open square brackets fraction numerator straight m cubed plus 6 straight m squared plus 9 straight m plus 4 over denominator 4 left parenthesis straight m plus 3 right parenthesis end fraction close square brackets equals fraction numerator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 4 right parenthesis over denominator 4 left parenthesis straight m plus 2 right parenthesis space left parenthesis straight m plus 3 right parenthesis end fraction
rightwards double arrow space space space fraction numerator 1 over denominator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 2 right parenthesis end fraction open square brackets fraction numerator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 4 right parenthesis over denominator 4 space left parenthesis straight m plus 3 right parenthesis end fraction close square brackets space equals space fraction numerator left parenthesis straight m plus 1 right parenthesis space left parenthesis straight m plus 4 right parenthesis over denominator 4 space left parenthesis straight m plus 2 right parenthesis space left parenthesis straight m plus 3 right parenthesis end fraction
WiredFaculty which is true

∴  P(m + 1) is true

∴  P(m) is true rightwards double arrowP (m + 1) is true
Hence, by the principle of mathematical induction, P(n) is true for all straight n space element of space straight N.


Some More Questions From Sets Chapter