Sponsor Area

Permutations And Combinations

Question
CBSEENMA11013073

If 4th, 10th and 16th terms of a GP. are x, y and z respectively, Prove that y, z are in GP.

Solution

Let a be the first term and r be the common ratio of G.P.
Given straight t subscript 4 space equals space straight x comma space space space straight t subscript 10 space equals space straight y comma space space straight t subscript 16 space equals space straight z
rightwards double arrow                         ar cubed space equals space straight x                                       ...(i)
                             ar to the power of 9 space equals space straight y                                       ...(ii)
                           space space ar to the power of 15 space equals space straight z                                       ...(iii)
Multiply (i) and (iii), we get WiredFaculty
or                        straight a squared straight r to the power of 18 space equals space xz   or          xz space equals space left parenthesis ar to the power of 9 right parenthesis squared space equals space straight y squared            [By using (ii)]

∴                     space space xz space equals space straight y squared          or          straight y over straight x space equals space straight z over straight y  or  x, y, z are in G.P.

Some More Questions From Permutations and Combinations Chapter