-->

Circles

Question
CBSEENMA10009827

Prove that the parallelogram circumscribing a circle is a rhombus.


                                       OR


Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution

Let ABCD be a parallelogram such that its sides touching a circle with centre O.

We know that the tangents to a circle from an exterior point are equal in length.

                  

 AP = AS      .......[Tangnts  from point A]    .......(i)

    BP = BQ      .......[Tangents from point B]   .......(ii)

    CR = CQ      .......[Tangents from point C]   .......(iii)

and, DR = DS   .......[Tangents from point D]  ........(iv)

 

Adding (i), (ii), (iii), and (iv), we get

AP + BP + CR + DR = AS + BQ + CQ + DS

 

(AP + BP) + (CR + DR) = ( AS + DS) + (BQ + CQ)

AB + CD = AD + BC

 

 2AB = 2BC         [ ABCD is a parallelogram  AB = CD and BC = AD]

 

AB = BC

 

Thus, AB = BC = CD = AD

 

Hence, ABCD is a rhombus.

 

                                         OR

 

A circle with centre O touches the sides  AB, BC, CD and DA  of a quadrilateral

ABCD at the points  P, Q, R and R respectively.

 

To prove:  AOB + COD = 180°  and,   AOD + BOC = 180°

                      

 Construction: Join OP, OQ, OR and OS.

 

Proof: Since the two tangents drawn from a external point to a circle

subtend equal angles at the centre.

 1 = 2,   3 = 4,    5 = 6  and 7 = 8Now,   1 + 2 +  3 + 4 + 5 +  6  + 7 + 8 = 360°                      [Sum of all the angles subtended at a point is 360°]2 ( 2 +  3 + 6  + 7) = 360°  and   2 (1 + 4 + 5 +  8) = 360° ( 2 +  3 ) + (6  + 7) = 180°   and  (1 +8) +( 4 + 5) = 180°         2 +  3 =AOB,     6  + 7 = COD   1 +8 =AOD    and    4 + 5 =BOC                    AOB  + COD = 180°  and AOD + BOC = 180°                                   

Hence proved.

 

 

 

Some More Questions From Circles Chapter