-->

Circles

Question
CBSEENMA10009820

Tangents PA and PB are drawn from an external point P to two concentric circle with centre O and radii 8 cm and 5 cm respectively, as shown in Fig., If AP = 15 cm, then find the length of BP.

                           

Solution

                           

Given: Tangents PA and PB are drwan from an external point P to two

          concentric circles with centre O and radii OA = 8 cm,  OB = 5 cm

          respectively. Also, AP = 15 cm.

 

Construction: We join the points O and P.

 

Proof:  OA  AP     ;    OB  BP

         [ Using the property that radius is perpendicular to the tangent at the 

             point of contact of a circle.]

 

In right angled triangle  OAP,

OP2 = OA2 + AP2       [ Using pythagoras theorem ]

 

      = (8)2 + ( 15 )2 = 64 + 225 = 289

 OP = 17 cm 

In right angled triangled OBP,

OP2 = OB2 + BP2

 BP2 = OP2 - OB2 

 (17)2 - (5)2 

 289 - 25

= 264

  BP = 265 = 266 cm.

 

Some More Questions From Circles Chapter