-->

Arithmetic Progressions

Question
CBSEENMA10009804

If the ratio of the sum of the first n terms of two A.Ps is  (7n + 1) : (4n + 27), then find the ratio of their 9th terms.

Solution

Let a1, a2 be the first terms and d1, d2 the common difference of the two given A.P.'s 

Then, sum of their n terms is given by

Sn = n22a1 + (n-1) d1    and   Sn = n22a2 + (n-1) d2  snsn =  n22a1 + (n-1) d1 n22a2 + (n-1) d2                       =  2a1 + (n-1) d12a2 + (n-1) d2

It is given that, 

snsn = 7n + 14n + 27 2a1 + (n-1)d12a2 + (n-1)d2 = 7n + 14n + 27  ..........(i)

In order to find the ratio of the mth terms of the two given A,P.'s,

We replace  n  by [ 2m-1] in equation (i)

 

2a1 + (17-1)d12a2 +(17-1)d2 = 7 x 17 + 14 x 17 + 272a1 + 16d12a2 +16d2 = 2419a1 + 8d1a2 +8d2 = 2419

Thus, the ratio of their 9th terms is  24:19.