-->

Circles

Question
CBSEENMA10009803

Prove that the lengths of two tangents drawn from an external point to a circle are equal.

Solution

Given: AP and AQ are two tangents from a point  A to a circle c(0,r)

 

To prove: AP = AQ

construction: Join OP, OQ and OA.

 

Proof:                         

                                              

In OPA  and  OQA,OPA = OQA = 90° .......(Tangent at any point of a circle is perpendicular                                                    to the radius through the point of contact)OP = OQ               .........( Radii of a circle)OA = OA               .........(Common )

Hence, by RHS- criterion of congruence, e have

OPA  OQA AP = AQ   ........(c.p.c.t.)

Some More Questions From Circles Chapter