-->

Circles

Question
CBSEENMA10009801

In the given figure, XY and X’Y’ are two parallel tangents to a circle with centre O and another tangents AB with point of contact C, is intersecting XY at A and X’Y’ at B. Prove that ∠AOB = 90°.

                  

Solution

                 

Since tangents drawn from an external point to a circle are equal.

Therefore,  AP = AC.

Thus, in triangles AOP and AOC, we have 

AP = AC

AO = AO   ..........[Common side]

OP = OC   ..........[ Radii of the same circle ]

So, by SSS- criterion of congruence,

We have,

AOP  AOCPAO = CAOPAC = 2CAO    .........(i)    

Similarly, we can prove that QBO = CBO

 CBQ = 2CBOnOW,  PAC +CBQ =180°   ............(ii)   [ Sum of the interior angle                                on the same side of transvarsal is 180° ]2CAO + 2CBO = 180°    .......[Using (i) and (ii)]CAO + CBO = 90°  180° - AOB = 90°  .......[Since CAO, CBO and  AOB are angles of a triangle, CAO + CBO + AOB = 180° ]AOB = 90°                

Some More Questions From Circles Chapter