-->

Circles

Question
CBSEENMA10009784

Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.

Solution

                      

 

Let AB be a chord of circle with centre O.

Let AP and BP be two tangents at A and B respectively.

Suppose the tangents meet at point P. Join OP.

Suppose OP meets AB at C.

   Now in, PCA and PCB,PA = PB      .............(Tangents from an external point are equal)APC = BPC      ........(PA and PB are equally inclined to OP)PC = PC          ..........( common)Hence, PAC  PBC       ......( by SAS congruence  criterion) PAC = PBC

Some More Questions From Circles Chapter