-->

Circles

Question
CBSEENMA10009783

A circle touches all the four sides of a quadrilateral ABCD. Prove that 

AB + CD = BC + DA

Solution

                       

 

Since tangents drawn from an external point to a circle are equal in length, we have

AP = AS    ........(i)

BP = BQ   ........(ii)

CR = CQ   ........(iii)

DR = DS   ........(iv)

Adding (i), (ii), (iii), (iv), we get 

 

    AP + BP + CR + DR = AS + BQ + CQ + DS

 

  ( AP + BP ) + ( CR + DR ) = ( AS + DS ) + ( BQ + CQ )

 

⇒  AB + CD = AD + BC

 

⇒  AB + CD = BC + DA

Some More Questions From Circles Chapter