-->

Circles

Question
CBSEENMA10009776

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution

                      

Let ABCD be a quadrilateral circumscribing a circle centered at O such that it touches the circle at point  P, Q, R, S.

Let us join the vertices of the quadrilateral ABCD to the center of the circle.

Consider OAP and OAS, 

AP = AS  (Tangents from the same point)

OP = OS  (Radii of the same circle)

OA = OA  ( common side )

OAP  OAS     ( SSS congruence criterion )Therefore, AA, PS, OOAnd thus, POA = AOS1 = 8Similarly,2 = 34 = 56 = 71 + 2 + 3 + 4 + 5 + 6 + 7 + 8 =360°1 + 8   + 2 + 3  + 4 + 5  + 6 + 7  = 360°21 + 22 + 25 + 26 = 360°21 + 2  + 25 + 6 = 360°1 + 2 + 5 + 6 = 180°AOB + COD = 180°Similarly, we can prove that  BOC + DOA = 180° 

Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Some More Questions From Circles Chapter