Question
Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
Solution
Given: A circle C ( 0, r ) and a tangent l at point A.
To prove: OA l
Construction: Take a point B, other than A, on the tangent l. Join OB. Suppose OB meets the circle in C.
Proof: We know that, among all line segment joining the point O to a point on l, the perpendicular is shortest to l.
OA = OC (Radius of the same circle)
Now, OB = OC + BC.
But among all the line segments, joining the point O to a point on AB, the shortest one is the perpendicular from O on AB.
Hence OA is perpendicular to l.