-->

Circles

Question
CBSEENMA10009733

In fig., a circle with centre O is inscribed in a quadrilateral ABCD such that, it touches the sides BC, AB, AD and CD at points P, Q, R and S respectively, If AB = 29 cm, AD = 23 cm, B = 90o and DS = 5 cm, then the radius of thecircle (in cm) is 

  • 11

  • 18

  • 6

  • 15

Solution

A.

11

Given: Ab, BC,CD,and AD tangents to the circle with centre O at

Q,P,S and R respectively.

AB=29 cm, AD=23 cm, DS=5 cm and B=900

Construction: Join PQ.

We know that, the lengths of the tangents drawn from an external

point to a circle are equal.

DS=DR=5 cm

AR= AD - DR= 23 cm- 5 cm= 18 cm 

AQ=AR= 18 cm

 QB = AB - AQ = 29 cm - 18 cm= 11 cm

QB = BP = 11 cm

In InPQBPQ2 = QB2 +BP2 =(11 cm)2 +(11 cm)2 = 2x(11 cm)2PQ=112 cm    ..........(1)INOPQ,PQ2 = OQ2 +OP2 = r2 +r2 = 2r2  (112)2 = 2r2 121 = r2r = 11 cmThus, the radius of the circleis 11 cm.

Some More Questions From Circles Chapter