-->

Circles

Question
CBSEENMA10009650

Prove that tangents drawn at the ends of a diameter of a circle are parallel to each other.

Solution

Let AB be the diameter of a circle, with centre O. The tangents PQ and RS are drawn at points A and B, respectively.

We know that a tangent at any point of a circle is perpendicular to the radius through the point of contact.
∴ OA ⊥ PQ and OB ⊥ RS
⇒ ∠OBR = 90°
∠OBS = 90°
∠OAP = 90°
∠OAQ = 90°
We can observe the following:
∠OBR = ∠OAQ and ∠OBS = ∠OAP
Also, these are the pair of alternate interior angles.
Since alternate interior angles are equal, the lines PQ and RS are parallel to each other.
Hence, proved.

Some More Questions From Circles Chapter