-->

Statistics

Question
CBSEENMA10008812

From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm2.

Solution

Let r cm be the radius and h cm be the height of the cylinder, then
r = 0.7 cm and h = 2.4 cm.
Let r1 cm be the radius, l cm be the slant height and h1 cm be the height of the cone, then
r1 = 0.7 cm and h1 = 2.4 cm
Now comma space space l italic space equals space square root of straight r subscript 1 superscript 2 plus straight h subscript 1 squared end root
space space space space space space space space space space space equals space square root of left parenthesis 0.7 right parenthesis squared plus left parenthesis 2.4 right parenthesis squared end root
space space space space space space space space space space space equals space square root of 0.49 plus 5.76 end root
space space space space space space space space space space space equals square root of 6.25 end root space equals space 2.5 space space cm

Now,
Total surface area of the remaining solid
= (C.S.A of cylinder) + (C.S.A of cone) + (area of upper base of the cylinder)
= 2 π rh + πr2l + πr2
= 2 π rh + π rl + π r2 [ ∵ r = r1]
equals space open parentheses 2 space straight x space 22 over 7 space straight x space 0.7 space straight x space 2.4 space plus 22 over 7 straight x space 0.7 space straight x space 2.5 space plus space 22 over 7 straight x space 0.7 space straight x space 0.7 close parentheses space space cm squared
equals space left parenthesis 1.56 space plus space 5.5 space plus 1.54 right parenthesis space cm squared
equals space 17.6 space cm squared

 

Some More Questions From Statistics Chapter