-->

Surface Areas And Volumes

Question
CBSEENMA10008650

A chord of circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding :

(i) Minor segment
(ii) Major sector.

Solution

Here, we have
r = 10 cm, and ө = 90°


Area of  sector (OAPBO)
equals space πr squared space equals space straight theta over 360
equals space 3.14 space straight x space 10 space straight x space 10 space straight x space 10 space straight x space 90 over 360
equals space 3.14 space straight x space 5 space straight x space 5
equals space 78.5 space cm squared
Area of  incrementAOB
     equals space 1 half straight r squared space space sin space straight theta space equals space 1 half space straight x space 10 space straight x space 10 space straight x space sin space 90 degree
equals space space 1 half space straight x space 10 space straight x space 10 space straight x space 1
equals space 50 space cm squared

Now,
(i) Let APB A is the given minor segment, then Area of minor segment (APBA)
= Area of sector (OAPBO) - area of ∆ (AOB)
= 78.5 cm2 - 50 cm2
= 28.5 cm2.
(ii) Area of major sector
= Area of circle Area of sector OAPBO
= (πr2 - 78.5) cm2
= (3.14 × 10 × 10 - 78.5) cm2
= (314 - 78.5) cm2 = 235.5 cm2