-->

Circles

Question
CBSEENMA10008336

A pole 5 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point A on the ground is 60° and the angle of depression of the point A from the top of the tower is 45°. Find the height of the tower.

Solution
Let BC be the height of the tower and CD be the pole of height 5m fixed on the top of the tower. Let BC = h m.

The angle of elevation of top of the pole from point A on the ground be 60° and the angle of depression of the point A from the top of the tower be 45°, i.e. ∠ BAD = 60° and ∠ BAC = 45°.
In right triangle ABC, we have
tan space 45 degree space equals space BC over AB
rightwards double arrow space space space 1 space space equals space straight h over AB
rightwards double arrow space space space AB space equals space space straight h space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis space space space space space space space space space space space space space space space space space space space space space space

In right triangle ABD, we have

tan space 60 degree space equals space space BD over AB
rightwards double arrow space space square root of 3 equals fraction numerator BC plus CD over denominator AB end fraction
rightwards double arrow space space square root of 3 equals fraction numerator straight h plus 5 over denominator AB end fraction
rightwards double arrow space space AB space equals space fraction numerator straight h plus 5 over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii), we get
rightwards double arrow space space space space space space space space square root of 3 space straight h space minus space straight h space equals space 5
rightwards double arrow space space space space space space space space straight h left parenthesis square root of 3 space minus space 1 right parenthesis space equals space 5
rightwards double arrow space space space space space space straight h space equals space fraction numerator 5 over denominator square root of 3 minus 1 end fraction straight x fraction numerator square root of 3 plus 1 over denominator square root of 3 plus 1 end fraction
rightwards double arrow space space space space space space straight h space equals space fraction numerator 5 left parenthesis square root of 3 plus 1 right parenthesis over denominator open parentheses square root of 3 close parentheses squared minus left parenthesis 1 right parenthesis squared end fraction equals fraction numerator 5 left parenthesis square root of 3 plus 1 right parenthesis over denominator 2 end fraction
straight h space equals space fraction numerator straight h plus 5 over denominator square root of 3 equals end fraction
rightwards double arrow space space space square root of 3 straight h space equals space straight h plus 5 space space space space space equals space fraction numerator 5 straight x 2.732 over denominator 2 end fraction equals 5 straight x 1.366 space equals space 3.83 space straight m
Hence, height of the tower be 6.83 m.



Some More Questions From Circles Chapter