-->

Circles

Question
CBSEENMA10008334

The angle of elevation of a cliff from a fixed point is ө. After going up a distance of K metres towards the top of the cliff at an angle of φ, it is found that the angle of elevation

is α. Show that the height of the cliff is  fraction numerator straight k left parenthesis cos space straight phi space minus space sin space straight phi. space cot space straight alpha right parenthesis over denominator cot space straight theta space minus space cot space straight alpha end fraction.

Solution
Let CE be a cliff of height h m. Angle of elevation of cliff from a fixed point A be ө.

i.e., ∠CAE = ө. ∠CAF = φ and AF = k metres. From F draw FD and FB perpendiculars on CE and AC respectively. It is also given that ∠DFE = α.
In right triangle ABF, we have
cos space straight phi space equals space AB over AF
rightwards double arrow space space space space cos space straight phi space equals space AB over straight K
rightwards double arrow space space space space AB space equals space straight K space cos space straight phi
and space space sin space straight phi space space equals space BF over AF
rightwards double arrow space space space space sin space straight phi space BF over straight K
rightwards double arrow space space space space space BF space equals space straight k space sin space straight phi
In right triangle ACE, we have
tan space straight theta space equals space CE over AC
rightwards double arrow space space tan space straight theta space equals space straight h over AC
rightwards double arrow space space AC space equals space fraction numerator straight h over denominator tan space straight theta end fraction space equals space straight h space cot space straight theta
Now comma space space space space DF space equals space BC space equals space AC minus AB
space space space space space space space space space space space space space equals space straight h space cot space straight theta space minus space straight k space cos space straight phi

And,    DE = CE - CD = CE - BF
= h - k sin φ.
In right triangle DFE, we have
tan space straight alpha space space equals space DE over DF
rightwards double arrow space space space space fraction numerator 1 over denominator cot space straight alpha end fraction equals fraction numerator straight h space minus space straight K space sin space straight phi over denominator straight h space cot space straight theta space minus space straight K space cos space straight phi end fraction
rightwards double arrow space straight h space cot space straight theta space minus straight K space cos space straight phi space equals space cot space straight alpha space left parenthesis straight h minus straight K space sin space straight phi right parenthesis
rightwards double arrow space straight h space cot space straight theta space minus space straight K space cos space straight phi space equals space space straight h space cot space straight alpha space minus space straight K space sin space straight phi space cot space straight alpha
rightwards double arrow space straight h space cot space straight theta space minus space straight h space cot space straight alpha space equals space space straight k space cos space straight phi space minus space straight k space sin space straight phi space cot space straight alpha
rightwards double arrow space straight h space equals space fraction numerator straight K left parenthesis cos space straight phi space minus space sin space straight phi space cot space straight alpha right parenthesis over denominator cot space straight theta space minus space cot space straight alpha end fraction
Hence, the height of the cliff is
fraction numerator straight K open parentheses cos space straight phi space minus space sin space straight phi. space cot space straight alpha close parentheses over denominator cot space straight theta space minus space cot space straight alpha end fraction

Some More Questions From Circles Chapter