-->

Circles

Question
CBSEENMA10008333

From the top of a tower the angles of depression of two objects on the same side of the tower are found to be α and β (α > β). If the distance between the objects is p metres,

show that the height It of the tower is given by h = fraction numerator straight p space tan space straight alpha. space tan space straight beta over denominator tan space straight alpha space minus space tan space straight beta end fraction Also, determine the height of the tower if p = 50 metres, α = 60°, β = 30°.

Solution
Case I : Let AB be the tower whose height is h metres. D arid C are the position of two objects which are p metres apart from each other. The angles of depression of two objects D and C from the top of the tower be β and α respectively.

i.e.,    ∠BDA = β and ∠BCA = α
In right triangle ABC, we have
tan space straight alpha space equals space AB over BC
rightwards double arrow space space tan space straight alpha space equals space straight h over straight x
rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight alpha end fraction space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In right triangle ABD, we have
tan space straight beta space equals space AB over BD
rightwards double arrow space space tan space straight beta space equals space fraction numerator straight h over denominator BC plus CD end fraction
rightwards double arrow space space tan space straight beta space equals space fraction numerator straight h over denominator straight x plus straight p end fraction
rightwards double arrow space space straight x plus straight p space equals space fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight beta end fraction minus straight p space space space space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii), we get
fraction numerator straight h over denominator tan space straight alpha end fraction space equals space fraction numerator straight h over denominator tan space straight beta end fraction minus straight p
rightwards double arrow space straight p space equals space fraction numerator straight h over denominator tan space straight beta end fraction minus fraction numerator straight h over denominator tan space straight alpha end fraction
rightwards double arrow space straight p space equals space fraction numerator straight h space tan space straight alpha space minus space straight h space tan space straight beta over denominator tan space straight beta. space tan space straight alpha end fraction
rightwards double arrow space straight p space tan space straight beta. space tan space straight alpha space equals space straight h space left parenthesis tan space straight alpha space minus space tan space straight beta right parenthesis
rightwards double arrow space space space space space straight h space equals space fraction numerator straight p space tan space straight beta space tan space straight alpha over denominator tan space straight alpha space minus space tan space straight beta end fraction
Case II : p = 50 m, α = 60°, β = 30°.
straight h space equals space fraction numerator 50 space tan space 30 degree space tan space 60 degree over denominator tan space 60 degree space minus space tan space 30 degree end fraction
equals space fraction numerator 50 cross times begin display style fraction numerator 1 over denominator square root of 3 end fraction end style square root of 3 over denominator square root of 3 minus begin display style fraction numerator 1 over denominator square root of 3 end fraction end style end fraction
equals fraction numerator 50 over denominator begin display style fraction numerator 3 minus 1 over denominator square root of 3 end fraction end style end fraction equals fraction numerator 50 square root of 3 over denominator 2 end fraction equals 25 square root of 3
= 20 x 1.732 = 43.25 m.
Hence, height of the tower is 43.25 m.

Some More Questions From Circles Chapter