-->

Circles

Question
CBSEENMA10008331

A ladder rests against a wall at an angle α to the horizontal, its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal. Show that  straight a over straight b equals fraction numerator cos space straight alpha space minus space cos space straight beta over denominator sin space straight beta space minus space sin space straight alpha end fraction.

Solution

Let BC be the ladder which slides down a distance b on the wall.
In right triangle ABC, we have
sin space straight alpha space equals space AB over BC equals fraction numerator AE plus EB over denominator BC end fraction
sin space straight alpha space equals space fraction numerator AE plus straight b over denominator BC end fraction
But comma space AE space equals space sin space straight beta space straight x space ED space space space left parenthesis In space increment space AED right parenthesis
So, replacing AE by ED sin β, we get 
sin space straight alpha space equals space fraction numerator ED space sin space straight beta space plus space straight b over denominator BC end fraction
rightwards double arrow space space space space space straight b space equals space BC space sin space straight alpha space minus space ED space Sin space straight beta

As, BC and ED both represent the same ladder.
BC = ED. (length of ladder does not change)
⇒ BC sin α - BC sin β = b
⇒ BC (sin α - sin β) = b    ...(i)
Similarly, in right triangle AED, we have
cos space straight beta space equals space AD over ED equals fraction numerator AC plus CD over denominator ED end fraction
cos space straight beta space equals space fraction numerator AC plus straight a over denominator ED end fraction
But comma space space space AC space equals space BC space cos space straight alpha space space space left parenthesis In space increment space ABC right parenthesis space
So, by replacing AC by BC cos α, we get ED cos β = BC cos α + a BC (cos . - cos α) = a [∴ ED = BC] ...(ii) Dividing (ii) by (i), we get
straight a over straight b equals fraction numerator cos space straight beta space minus space cos space straight alpha over denominator sin space straight alpha minus space sin space straight beta end fraction
straight a over straight b equals fraction numerator cos space straight alpha space minus space cos space straight beta over denominator sin space straight beta space minus space sin space straight alpha end fraction

 

Some More Questions From Circles Chapter