-->

Circles

Question
CBSEENMA10008329

From an aeroplane vertically above a straight horizontal road, the angles of depression of two consecutive stones on opposite sides of the aeroplane are observed to be α and β. Show that the height in miles of aeroplane above the road is given by  fraction numerator tan space straight alpha space. space tan space straight beta over denominator tan space straight alpha space plus space tan space straight beta end fraction.

Solution

Let D be the vertical position of the aeroplane of height h mile i.e., CD = h miles. Let A and B are the position of two stones on opposite sides of the aeroplane which are at a distances of 1 mile from each other. It is also given that the angles of depression of these stones from the aeroplane are α and β respectively.
i.e.,    ∠CAD = α and ∠CBD = β
Let AC = x then BC = 1-x

In right triangle ACD, we have
rightwards double arrow space space space space space space space space tan space straight alpha space space space equals space CD over AC
rightwards double arrow space space space space space space space space tan space straight alpha space space space equals space space straight h over straight x
space space space space space space space space space space space space space space space space space space straight x space equals space space fraction numerator straight h over denominator tan space straight alpha end fraction space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In right triangle BCD, we have
tan space straight beta space equals space CD over BC
rightwards double arrow space space tan space straight beta space equals space fraction numerator straight h over denominator 1 minus straight x end fraction
rightwards double arrow space space space 1 space minus straight x space equals space fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space space straight x space equals space 1 minus fraction numerator straight h over denominator tan space straight beta end fraction space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii), we get
fraction numerator straight h over denominator tan space straight alpha end fraction space equals space 1 space minus space fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space fraction numerator straight h over denominator tan space straight alpha end fraction plus fraction numerator straight h over denominator tan space straight beta end fraction equals 1
rightwards double arrow space space space fraction numerator straight h space tan space straight beta space plus space straight h space tan space straight alpha over denominator tan space straight alpha space. space tan space straight beta end fraction equals 1
rightwards double arrow space space space straight h space left parenthesis tan space straight beta space plus space tan space straight alpha right parenthesis space equals space tan space straight alpha space. space tan space straight beta
rightwards double arrow space space space straight h space equals space fraction numerator tan space straight alpha space. space tan space straight beta over denominator tan space straight beta space plus space tan space straight alpha end fraction
Hence, the height of the aeroplane above the road in miles be fraction numerator tan space straight alpha space. space tan space straight beta over denominator tan space straight beta space plus space tan space straight alpha end fraction.