-->

Circles

Question
CBSEENMA10008327

A round balloon of radius r subtends an angle α at the eye of the observer while the angle of elevation of its centre is β. Prove that the height of the centre of the balloon is r sin β . cosec α/2.

Solution
Let P be the eye of observer. Let PA and PB are tangents to the round balloon.

PX is the horizontal line and CQ ⊥ PQ. It is given that
angle APB space equals space straight alpha
therefore space angle CPA space equals space angle CPB space equals space straight alpha over 2
and space angle CPX space equals space straight beta

Let height of the centre C be h m and CA = CB = r
In right triangle CBP, we have

sin space open parentheses straight alpha over 2 close parentheses equals BC over CP
rightwards double arrow space sin space open parentheses straight alpha over 2 close parentheses equals straight r over CP
rightwards double arrow space CP space equals space fraction numerator straight r over denominator sin open parentheses begin display style straight alpha over 2 end style close parentheses end fraction
rightwards double arrow space CP space equals space straight r space cosec space straight alpha over 2
In right triangle CPQ, we have 
sin space straight beta space equals space CQ over CP
rightwards double arrow space space CQ space equals space CP space sin space straight beta
rightwards double arrow space space space CQ space equals space straight r space cosec space straight alpha over 2 space sin space straight beta
Hence, the height of the centre
 

= r sin straight beta space cosec space straight alpha over 2

Some More Questions From Circles Chapter