-->

Circles

Question
CBSEENMA10008324

From a point 100 m above a lake, the angle of elevation of a stationary helicopter is 30° and the angle of depression of reflection of the helicopter in the lake is 60°. Find the height of the helicopter.

Solution
Let AB be the surface of the lake and P be the point of observation such that AP = 100 m. Let C be the position of the helicopter and C' be its reflection in the lake. Then,CB = C'B.

Let PM be perpendicular from P on CB. Then, ∠CPM = 30° and ∠CPM = 60°.
Let CM = h. Then, CB = h + 100 and CB = h + 100.
In right incrementCMP,
tan space 30 degree space equals space CM over PM rightwards double arrow fraction numerator 1 over denominator square root of 3 end fraction equals straight h over PM rightwards double arrow PM equals square root of 3 straight h space space space... left parenthesis straight i right parenthesis
In right incrementPMC'
tan space 60 degree space equals fraction numerator straight C apostrophe straight M over denominator PM end fraction rightwards double arrow square root of 3 equals fraction numerator straight C apostrophe straight B plus BM over denominator PM end fraction
space space space space space space space space space space rightwards double arrow space square root of 3 equals fraction numerator straight h plus 100 plus 100 over denominator PM end fraction
space space space space space space space space space space rightwards double arrow space PM equals fraction numerator straight h plus 200 over denominator square root of 3 end fraction space space space space space space space space space... left parenthesis ii right parenthesis
From (i) and (ii), we get
square root of 3 space straight h space equals space fraction numerator straight h plus 200 over denominator square root of 3 end fraction
rightwards double arrow space 3 straight h space equals space straight h plus 200
rightwards double arrow space 2 straight h space equals space 200 space rightwards double arrow space straight h space equals space 100

Now, CB = CM + MB = h + 100 = 100 + 100 = 200
Hence, the height of the helicopter from the surface of the lake = 200 m

Some More Questions From Circles Chapter