-->

Circles

Question
CBSEENMA10008317

The angles of depression of the top and the bottom of a 9 m high building from the top of a tower are 30° and 60° respectively. Find the height of the tower and the distance between the building and the tower.


Solution
Let AB be the building such that AB = 9 m and CD is the tower. The angles of depression of the top and the bottom of the building from the tower are 30° and 60° respectively.
straight i. straight e comma space space space space space angle CAE space equals space 30 degree
and space space space space space angle CBD space equals space 60 degree
Let space space space space space space CE space space space equals space space straight h
and space space space space space space AE space space space space equals space space BD space equals space straight x
In space increment AEC space equals space an space 30 degree space equals space CE over AE
rightwards double arrow space space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over straight x
rightwards double arrow space straight x space equals space square root of 3 space straight h space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In In space increment CBD comma space space space space tan space 60 degree space space equals space CD over BD
rightwards double arrow space space space space space space space space square root of 3 space equals space fraction numerator straight h plus 9 over denominator straight x end fraction
rightwards double arrow space space space space space space space square root of 3 space straight x space equals space straight h space plus space 9
rightwards double arrow space space space space space space space space space space straight x space equals space fraction numerator straight h plus 9 over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii), we get
square root of 3 space straight h space equals space fraction numerator straight h plus 9 over denominator square root of 3 end fraction

⇒    3h = h + 9
⇒    3h - h = 9
⇒    2h = 9
⇒    h = 4.5 m
Now, height of the tower
= (h + 9) met.
= (4.5 + 9) met.
= 13.5 met.
Difference between the building and tower (x)
equals space square root of 3 space straight h
equals space square root of 3 space straight x space 4.5
equals space 1.732 space straight x space 4.5
equals space 7.794 space straight m space left parenthesis app right parenthesis.

Some More Questions From Circles Chapter