-->

Circles

Question
CBSEENMA10008346

From the top and foot of a tower 40 m high, the angle of elevation of the top of a light house is found to be 30° and 60° respectively. Find the height of the lighthouse. Also find the distance of the top of the lighthouse from the foot of the tower.

Solution

Let AC be the Tower such that AC = 40 m and BE be tine light house. Let CD be the horizontal from C. It is given that angles of elevation of the top of the light house from top and foot of the tower be 30° and 60° respectively.
i.e., ∠DCE = 30° and ∠BAE = 60°
Let AB = CD = x m and DE = x m
Now, in right triangle CDE, we have tan 30°
equals space DE over CD
rightwards double arrow space fraction numerator 1 over denominator square root of 3 end fraction equals straight h over straight x
rightwards double arrow space space straight x space equals space square root of 3 straight h end root space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In right triangle ABE, we have
tan space 60 degree space equals space BE over AB
rightwards double arrow space space space space square root of 3 space equals space fraction numerator straight h plus 40 over denominator straight x end fraction
rightwards double arrow space space space space straight x space equals space fraction numerator straight h plus 40 over denominator square root of 3 end fraction space space space space space space space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii), we gel
square root of 3 straight h end root space equals space fraction numerator straight h plus 40 over denominator square root of 3 end fraction
rightwards double arrow space space space 3 straight h space equals space straight h space plus space 40
rightwards double arrow space space space 2 straight h space equals space 40
rightwards double arrow space space straight h space equals space 20 space straight m
Hence,heighl of light house = BD + DE = 40 + 20 = 60 m.
In right triangle ABE, we have sin 60  equals BE over AE
rightwards double arrow space space space fraction numerator square root of 3 over denominator 2 end fraction equals 60 over AE
rightwards double arrow space space space space AE space equals space fraction numerator 120 over denominator square root of 3 end fraction
rightwards double arrow space space space space AE space equals space fraction numerator 120 over denominator square root of 3 end fraction straight x fraction numerator square root of 3 over denominator square root of 3 end fraction equals 40 square root of 3 straight m

Hence, the distance of the top of the light house from the foot of the tower is 40 square root of 3 space straight m

Some More Questions From Circles Chapter