-->

Circles

Question
CBSEENMA10008343

From the top of a building 100 m high, the angles of depression of the top and bottom of a tower are observed to be 45° and 60° respectively. Find the height of the tower. Also find the distance between the foot of the building and bottom of the tower.

Solution

Let CD be the building such that CD = 100 m.
Let AB be the tower of height h metre. It is given that the angles of depression of the top A and the bottom B of the lower AB are 45° and 60° respectively.
i.e.,    ∠EAC = 45° and ∠DBC = 60°
Let    BD = AE = x
In right triangle AEC, we have
tan space 45 degree space equals space CE over AE
rightwards double arrow space space space space space space 1 space equals space fraction numerator 100 minus straight h over denominator straight x end fraction
rightwards double arrow space space space space space space space straight x equals space 100 space minus space straight h space space space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In right triangle BDC, we have
tan space 60 degree space equals space CD over BD
rightwards double arrow space space square root of 3 space equals space 100 over straight x
rightwards double arrow space space straight x space equals space fraction numerator 100 over denominator square root of 3 end fraction space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii), we get
100 minus straight h space equals space fraction numerator 100 over denominator square root of 3 end fraction
rightwards double arrow space space space square root of 3 left parenthesis 100 minus straight h right parenthesis space equals space 100
rightwards double arrow space space space 100 square root of 3 minus square root of 3 straight h end root space equals space 100
rightwards double arrow space space square root of 3 straight h end root equals space 100 square root of 3 minus 100
rightwards double arrow space straight h space equals space fraction numerator 100 square root of 3 minus 100 over denominator square root of 3 end fraction
rightwards double arrow space space straight h space equals space fraction numerator 100 left parenthesis square root of 3 minus 1 right parenthesis over denominator square root of 3 end fraction
rightwards double arrow space space straight h space equals space fraction numerator 100 left parenthesis 17.32 minus 1 right parenthesis over denominator 1.732 end fraction
space space space space space space space equals space fraction numerator 100 straight x space 0.732 over denominator 1.732 end fraction equals fraction numerator 73.2 over denominator 1.732 end fraction equals 42.26 space straight m
Hence,Height of tower (AB) = 42.26 m.

Some More Questions From Circles Chapter