-->

Circles

Question
CBSEENMA10008298

From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower

Solution

Let AC be the building whose height is 7 m and BE be the cable tower.
It is given that the angle of elevation of the top E of the cable tower from C and the angle of depression of its foot from C be 60° and 45° respectively.
i.e.,    ∠DCE = 60° and ∠BCD = 45°.
Also,    AC = BD = 7 m.
Let    DE = h m
In right triangle DCE, we have
tan space 60 degree space equals space DE over CD
rightwards double arrow space space space square root of 3 space equals space straight h over CD
rightwards double arrow space space CD space equals space fraction numerator straight h over denominator square root of 3 end fraction space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
Now, in right triangle BCD, we have
tan space 45 degree space space equals space BD over CD
rightwards double arrow space space space space 1 space equals space 7 over CD
rightwards double arrow space space space CD space equals space 7 space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii), we get
fraction numerator straight h over denominator square root of 3 end fraction space equals space 7
straight h space equals space 7 square root of 3 space straight m

Hence,  Total height of the cable lower (BE)
equals space BD space plus space DE space equals space 7 space straight m space plus space 7 square root of 3 space straight m space equals space 7 space left parenthesis 1 space plus space square root of 3 right parenthesis space straight m.