-->

Circles

Question
CBSEENMA10008297

A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joing this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see Fig. 9.12). Find the height of the tower and the width of the canal.


Fig. 9.12.

Solution

Let AB be the tower of height h metres standing on a bank of a canal. Let C be a point on the opposite bank of a canal, such that BC = x metres.
Let D be the new position after changing the elevation. It is given that CD = 20 m
The angle of elevation of the top of the tower at C and D are respectively 60° and 30°.
i.e.    ∠ACB = 60° and ∠ADB = 30°
In right triangle ABC, we have
tan space 60 degree space equals space AB over BC
rightwards double arrow space space space square root of 3 space equals space straight h over straight x
rightwards double arrow space space space space straight x space equals space fraction numerator straight h over denominator square root of 3 end fraction space space space space space space space space space space space... left parenthesis straight i right parenthesis
In right triangle ABD, we have
tan space 30 degree space space equals space AB over BD
rightwards double arrow space space space space fraction numerator 1 over denominator square root of 3 end fraction equals fraction numerator straight h over denominator straight x plus 20 end fraction
rightwards double arrow space space space straight x plus 20 space equals space square root of 3 space straight h
rightwards double arrow space space space straight x space equals space square root of 3 space straight h space
rightwards double arrow space space space straight x space equals space square root of 3 space straight h space minus space 20 space space space space space space space... left parenthesis ii right parenthesis
Comparing (i) and (ii), we get
fraction numerator straight h over denominator square root of 3 end fraction equals square root of 3 straight h end root space minus space 20
rightwards double arrow space space space space straight h space equals space square root of 3 left parenthesis square root of 3 space straight h space minus 20 right parenthesis
rightwards double arrow space space space space straight h space equals space 3 straight h space minus space 20 square root of 3
rightwards double arrow space space space straight k space minus space 3 straight h space equals space minus 20 square root of 3
rightwards double arrow space space space minus 2 straight h space equals space minus 20 square root of 3
rightwards double arrow space space space space space straight h space space space equals space 10 square root of 3
Putting this value in (i), we get
straight x equals fraction numerator straight h over denominator square root of 3 end fraction equals fraction numerator 10 square root of 3 over denominator square root of 3 end fraction equals space 10 space straight m
Hence, the height of tower equals 10 square root of 3 metres and width of the canal = 10 m.

Some More Questions From Circles Chapter