-->

Some Applications Of Trigonometry

Question
CBSEENMA10008281

Prove the following identity:
sec A (1 - sin A) (sec A + tan A) = 1



Solution

sec A (1 - sin A) (sec A + tan A) = 1
L.H.S. = sec A (1 - sin A) (sec A + tan A) 
equals space open parentheses fraction numerator 1 minus sinA over denominator cosA end fraction close parentheses open parentheses 1 over cosA plus sinA over cosA close parentheses
equals open parentheses fraction numerator 1 minus sinA over denominator cosA end fraction close parentheses space open parentheses fraction numerator 1 plus sinA over denominator cosA end fraction close parentheses
equals space fraction numerator left parenthesis 1 minus sinA right parenthesis thin space left parenthesis 1 plus sinA right parenthesis over denominator cos squared straight A end fraction
equals space fraction numerator 1 minus sin squared straight A over denominator cos squared straight A end fraction space equals space fraction numerator cos squared straight A over denominator cos squared straight A end fraction equals space space 1
equals straight R. straight H. straight S.
Hence, L.H.S. = R.H.S.

Some More Questions From Some Applications of Trigonometry Chapter