-->

Some Applications Of Trigonometry

Question
CBSEENMA10008277

Prove the following identity:
fraction numerator 1 over denominator secθ minus tanθ end fraction minus 1 over cosθ space equals space 1 over cosθ minus fraction numerator 1 over denominator secθ plus tanθ end fraction.

Solution
fraction numerator 1 over denominator secθ minus tanθ end fraction minus 1 over cosθ space equals space 1 over cosθ minus fraction numerator 1 over denominator secθ plus tanθ end fraction
straight L. straight H. straight S. space equals space fraction numerator 1 over denominator secθ minus tanθ end fraction minus 1 over cosθ
space space space space space space space space space space space space space equals space open parentheses fraction numerator 1 over denominator secθ minus tanθ end fraction cross times fraction numerator secθ plus tanθ over denominator secθ plus tanθ end fraction close parentheses minus 1 over cosθ
space space space space space space space space space space space space space equals open parentheses fraction numerator secθ plus tanθ over denominator sec squared straight theta minus tan squared straight theta end fraction close parentheses minus secθ
space space space space space space space space space space space space space space equals space secθ plus tanθ minus secθ space equals space tanθ
straight R. straight H. straight S. equals space 1 over cosθ minus fraction numerator 1 over denominator secθ plus tanθ end fraction
space space space space space space space space space space space space space equals space 1 over cosθ minus open parentheses fraction numerator 1 over denominator secθ plus tanθ end fraction cross times fraction numerator secθ minus tanθ over denominator secθ minus tanθ end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space secθ minus open parentheses fraction numerator secθ minus tanθ over denominator sec squared straight theta minus tan squared straight theta end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space secθ space minus left parenthesis secθ minus tanθ right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space secθ minus secθ plus tanθ
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space tanθ
Hence, L.H.S. = R.H.S.