-->

Some Applications Of Trigonometry

Question
CBSEENMA10008265

Prove the following identity:
tan squared straight A minus tan squared straight B space equals space fraction numerator sin squared straight A minus sin squared straight B over denominator cos squared straight A cross times cos squared straight B end fraction.

Solution
tan squared straight A minus tan squared straight B space equals space fraction numerator sin squared straight A minus sin squared straight B over denominator cos squared straight A. space cos squared straight B end fraction
L.H.S. = tan squared straight A minus tan squared straight B
          equals space fraction numerator sin squared straight A over denominator cos squared straight A end fraction minus fraction numerator sin squared straight B over denominator cos squared straight B end fraction
equals space fraction numerator sin squared straight A. space cos squared straight B space minus space sin squared straight B. space cos squared straight A over denominator cos squared straight A. space cos squared straight B end fraction
equals space fraction numerator sin squared straight A left parenthesis 1 minus sin squared straight B right parenthesis space minus space sin squared straight B left parenthesis 1 minus sin squared straight A right parenthesis over denominator cos squared straight A. space cos squared straight B end fraction

equals space fraction numerator space sin squared straight A minus sin squared straight A. space sin squared straight B space minus space sin squared straight B plus sin squared straight B. sin squared straight A over denominator cos squared straight A. space cos squared straight B end fraction
equals space fraction numerator sin squared straight A minus sin squared straight B over denominator cos squared straight A. space cos squared straight B end fraction
space equals space straight R. straight H. straight S.
Hence, L.H.S. = R.H.S.

Some More Questions From Some Applications of Trigonometry Chapter