Sponsor Area

Real Numbers

Question
CBSEENMA10006112

Prove that space 3 plus 2 square root of 5is irrational.

Solution
Let us assume, to the contrary that space 3 plus 2 square root of 5 is rational.

That is, we can find coprime a and b (b ≠ 0)
such space that space space space space space space space space space space space 3 plus 2 square root of 5 equals straight a over straight b
Therefore comma space space straight a over straight b space equals space 3 space plus 2 square root of 5 space
rightwards double arrow space space space space space space fraction numerator straight a minus 3 straight b over denominator straight b end fraction equals 2 square root of 5
rightwards double arrow space space space space space space space space fraction numerator straight a minus 3 straight b over denominator 2 straight b end fraction equals square root of 5 rightwards double arrow fraction numerator straight a over denominator 2 straight b end fraction minus 3 over 2
Since a and b are integers, we get   fraction numerator a over denominator 2 b end fraction minus 3 over 2 is rational, and so square root of 5 is rational.
But this contradicts the fact that square root of 5 is irrational.

This contradiction has arisen because of our incorrect assumption that space space space 3 plus 2 square root of 5 is rational

So, we conclude that space space 3 plus 2 square root of 5 is irrational.