-->

Polynomials

Question
CBSEENMA10006093

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
4 straight u squared plus 8 straight u

      
     

Solution

We have,
4u2 + 8u = 4u (u + 2)
So, the value of 4u2 + 8u is zero when 4u = 0 or u + 2 = 0
i.e., when u = 0 or u = –2
Therefore, the zeroes of 4u2 + 8u are 0 and - 2
Now,
Sum of zeroes = 0 + (-2) = fraction numerator negative 2 over denominator 1 end fraction
                                         equals fraction numerator negative left parenthesis Coefficient space of space straight u right parenthesis over denominator left parenthesis Coefficient space of space straight u squared right parenthesis end fraction
Product of zeroes = 0(-2) = 0 over 1
                            = fraction numerator Constant space term over denominator Coefficient space of space straight u squared end fraction

Some More Questions From Polynomials Chapter