-->

Arithmetic Progressions

Question
CBSEENMA10007880

Show that a1 , a2 , . . ., an, . . . form an AP where an is defined as below :
an = 9 – 5n

Solution

It is given that :
an = 9 – 5n
a1 = 9 – 5(1) = 9 – 5 = 4
a2 = 9 – 5 (2) = 9 – 10 = –1
and a3 = 9 – 5(3) = 9 – 15 = –6
Now, we have following numbers :
4, –1,–6, –11,.........
Since, the difference between each pair of consecutive terms are constant.
So, the given numbers form an A.P.
Here, a = 4, d = –5, n = 15
      We space know comma space space space space space space straight S subscript straight n space equals straight n over 2 left square bracket 2 straight a space plus left parenthesis space straight n minus 1 right parenthesis straight d right square bracket
space space space space space space space space space space space space space space space space space space So comma space space straight S subscript 15 equals 15 over 2 left square bracket 2 cross times 4 plus 915 minus 109 minus 50 right square bracket
space space space space space space space space space space space space space space space space space equals 15 over 2 left square bracket 8 minus 70 right square bracket equals 15 over 2 cross times negative 62
space space space space space space space space space space space space space space space space space equals 15 cross times negative 32 equals negative 480