-->

Arithmetic Progressions

Question
CBSEENMA10007877

Show that a1 , a2 , . . ., an, . . . form an AP where an is defined as below :
a= 3 + 4n

Solution

It is given that,
         a= 3 + 4n
So,    a= 3 + 4(1) = 3 + 4 = 7
         a2  = 3 + 4 (2) = 3 + 8 = 11
and    a= 3 + 4(3) = 3 + 12 = 15
Now, er have following numbers :
    7, 11, 15, ...........
Since the difference between each pair of consecutive terms are constant
So, the given number forms an A. P.
Here, a = 7, d = 4,    n  = 15
We know that, 
straight S subscript straight n equals straight n over 2 left square bracket 2 straight a plus left parenthesis straight n minus 1 right parenthesis straight d right square bracket
So comma space space space straight S subscript 25 equals 25 over 2 left square bracket 2 space straight x space 7 space plus space left parenthesis 25 space minus space 1 right parenthesis space 4 right square bracket
space space space space space space space space space space space space space space equals 25 over 2 left square bracket 14 plus 96 right square bracket space equals space 25 over 2 cross times 110
space space space space space space space space space space space space space space space equals space 25 cross times 55 space equals space 1375